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Abstract—The protonation of NADH-like dihydropyridines and cyclic enol ethers generates reactive cationic intermediates, which
interact with isocyanides to afford a-carbamoylated heterocycles after an aqueous quenching, in Ugi and Passerini-type reactions,
thus broadening the scope of these multicomponent processes.
� 2004 Elsevier Ltd. All rights reserved.
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Scheme 1. Scaffolds resulting from the reaction of dihydropyridines

with aldehydes and anilines.
Multicomponent reactions (MCRs) hold a privileged
position among the synthetic strategies in terms of effi-
ciency, particularly regarding the preparation of collec-
tions of molecules or in diversity oriented issues.1 The
systematic exploration of the chemical space through
this methodology is far beyond the range offered by con-
ventional procedures. Among MCRs, the Ugi and
Passerini reactions are the most powerful and versatile
processes, and have been intensively used in synthetic
and medicinal chemistry.2 In these reactions, the key
step is the nucleophilic attack of the isocyanide upon
the iminium ion or the activated carbonyl, which are
generated in situ.3,4 In order to expand the scope of
these processes, and make the ready functionalization
of fundamental heterocyclic frameworks feasible, we
considered alternative ways to generate the reactive
intermediates.5 In this paper we report the study of the
protonation of activated olefin moieties, present in
dihydropyridines (1) and cyclic enol ethers (2), as the
way to promote the a-carbamoylation of these hetero-
cyclic structures through interaction with isocyanides
(Scheme 1).

The first experiments involved the reactivity of N-
alkyldihydropyridines (1), as readily available precur-
sors for the preparation of complex piperidine-based
compounds.6–8 Thus, a MeOH solution of dihydropyri-
dine 1a reacted with tert-butylisocyanide (2a) in the
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presence of TFA, and, after an aqueous quenching,
afforded the expected a-carboxamide 3a in low yield
(�20%) together with some byproducts arising from
the capture of the iminium ion by the nucleophilic sol-
vent. Thus, 2-methoxytetrahydropyridines and related
tetrahydropyridine dimers were isolated in these experi-
ments. Also, the formamides formed by hydrolysis of
the isocyanides were detected in some entries.

The parameters of the reaction were modified to im-
prove the outcome. Noteworthy, the reaction performed
in the presence of an excess of water with p-toluenesulf-
onic acid in catalytic amounts was not successful and
yielded exclusively products derived from the hydrolysis
of the isonitriles and the dihydropyridines. The best
yields were obtained by using THF (or DCM) as the
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solvent, premixing the dihydropyridine with the isocya-
nide and adding a stoichiometric amount of a sulfonic
acid [methanesulfonic, (±)-camphorsulfonic, or p-tolu-
enesulfonic, but not triflic acid which polymerized the
dihydropyridine] at �78 �C, stirring the mixture at
0 �C, and quenching with water after 24h.9 The process
is general and diversely substituted dihydropyridines
(the most representative modifications at the N-akyl-
and the b-electron-withdrawing group positions were
examined) underwent the transformation with cyclo-
hexyl-, benzyl-, and tert-butylisocyanide in yields rang-
ing from 64% to 97% (Table 1).

On the other hand, the possibility of promoting enantio-
selective transformations was considered, and carbox-
amide 3a was prepared using (+)-camphorsulfonic acid
as the catalyst. Unfortunately, we observed practically
no enantiomeric excess (2%); however, the enantiomers
were separated through routine chiral HPLC, thereby
providing a convenient resolution for the racemic
mixtures.10

The chemistry of the cyclic enol ethers was tackled next,
and essentially the same conditions were effective in the
transformation of dihydropyrans and dihydrofurans.
However, in these cases, the corresponding formamide
(arising from the hydrolysis of the isocyanide) was pro-
duced in noticeable yields (up to 15%). Interestingly,
Table 1. a-Carbamoylation of dihydropyridines 1

i) R5-NCN
R6

R7

RSO3H
THF, -78ºC
ii) H2O1

Entry Dihydropyridine R6 R7

1 1a Me CN

2 1b Me CO2Me

3 1b Me CO2Me

4 1c Bn COMe

5 1c Bn COMe

6 1d Bn CONH

a Isolated yield.

Table 2. a-Carbamoylation of cyclic enol ethers 2

i) R5-NCO RSO3H
THF, -78ºC
ii) H2O

2

R8

n

R9

Entry Enol ether n R8/R9

1 2a 1 H/H

2 2a 1 H/H

3 2b 1 CH2OAc/H

4 2d 0 H/H

5 2d 0 H/H

6 2f 0 H/Me

a Isolated yield.
b Obtained as a 60:40 mixture of trans and cis isomers.
the use of p-toluenesulfonic acid monohydrate was also
efficient and was considered in some cases. 2H-Di-
hydropyran and dihydrofuran were converted into the
a-carboxamido derivatives in acceptable yields (Table
2, entries 1, 2, 4, and 5). Interestingly, the substituted
pyran 2b underwent the expected transformation to
yield a 60:40 mixture of the trans and cis diastereomers
(entry 3).11

No productive transformations were possible under the
usual conditions tested with the 3,4-dihydro-6-methyl-
2H-pyran-2-one, probably because of the less activated
olefin system.

On the other hand, after treatment with tert-butylisocy-
anide, the 3,4-dihydro-2-ethoxy-2H-pyran afforded a
complex mixture in which the expected a-carboxamido
derivatives (the diastereomeric mixture) were detected,
probably indicating a competing reactivity of the acetal
function under the reaction conditions.12 The formation
of a-trisubstituted carboxamides through this method
was satisfactorily accomplished, and the a-methyl-
dihydrofuran reacted normally to form the expected ad-
duct, which contains a quaternary stereogenic center
(entry 6).

In conclusion, a novel, one-pot, direct a-carbamoylation
of enol ethers and dihydropyridines is reported.13 The
N
R6

R7

N
H

O
R5

3

R5 Product Yield (%)a

tert-Bu 3a 97

C6H11 3b 89

Bn 3c 75

tert-Bu 3d 70

C6H11 3e 85

2 C6H11 3f 64
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protocol developed allows the straightforward function-
alization of key building blocks in heterocyclic chemis-
try, and may prove useful in the synthesis of
carboxamido-piperidines and -pyrans, scaffolds with rel-
evant presence in bioactive compounds.14 Further work
is underway in order to extend the synthetic methodol-
ogy described.
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